Applied Molecular Genetics for Improved Crop Yields

3,451 views

|

October 23, 2013

  • Share
  • Our lab aims to understand the molecular mechanisms underlying important agronomic traits in wheat and, using this knowledge, to develop informed strategies to modify the crop’s performance in the field. We are attempting to understand a series of traits that directly relate to yield and yield stability in farmer’s field. These traits include yield per se as well as other yield-related traits such as grain size, grain filling duration, and pre-harvest sprouting. These are all multigenic traits which can have contrasting roles in affecting yield depending on the specific environment. The complexity of these traits is further compounded by the polyploid nature of wheat. Through the use of near-isogenic lines across multiple environments we have recently validated a QTL affecting grain width, flowering time and final crop maturity. The region increases yield by an average of ~4.5%, equivalent to the gains made by an average UK breeder in 9 years. We will present our latest progress in unravelling these multiple effects using recombinant lines across the region. We will also discuss how understanding the mechanism underlying this QTL should enable us to exploit variation in the other homoeologues genomes and relate this to our current knowledge of grain size genes in rice. We will also outline our work on in silico TILLING in polyploid wheat and how this will enable use quickly validate candidate genes emerging from fine mapping projects. We hope this resource will enable more researchers to extend their work into these important crop species and fully exploit the (ongoing) release of wheat genome sequence.

    Flow Chemistry

    Keep up to date with all your favourite videos and channels.

    Get personalised notifications on new releases and channel content by subscribing to the LabTube eNewsletter.