BUB1: Regulating EGFR Signaling and Internalization | Aging-US

5 views

|

July 17, 2023

  • Share
  • Aging-US published this research paper on July 3, 2023 in Volume 15, Issue 13, entitled, “Budding uninhibited by benzimidazoles-1 (BUB1) regulates EGFR signaling by reducing EGFR internalization" by researchers from the Department of Radiation Oncology, University of Michigan, Ann Arbor, MI; Department of Radiation Oncology, Henry Ford Health System, Detroit, MI; Department of Radiation Oncology, UH Seidman Cancer Center, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH. DOI - https://doi.org/10.18632/aging.204820 Corresponding authors - Shyam Nyati - snyati1@hfhs.org, and Alnawaz Rehemtulla - alnawaz@umich.edu Abstract EGFR signaling initiates upon ligand binding which leads to activation and internalization of the receptor-ligand complex. Here, we evaluated if BUB1 impacted EGFR signaling by regulating EGFR receptor internalization and activation. BUB1 was ablated genomically (siRNA) or biochemically (2OH-BNPP1) in cells. EGF ligand was used to initiate EGFR signaling while disuccinimidyl suberate (DSS) was used for cross linking cellular proteins. EGFR signaling was measured by western immunoblotting and receptor internalization was evaluated by fluorescent microscopy (pEGFR (pY1068) colocalization with early endosome marker EEA1). siRNA mediated BUB1 depletion led to an overall increase in total EGFR levels and more phospho-EGFR (Y845, Y1092, and Y1173) dimers while the amount of total EGFR (non-phospho) dimers remained unchanged. BUB1 inhibitor (BUB1i) decreased EGF mediated EGFR signaling including pEGFR Y845, pAKT S473 and pERK1/2 in a time dependent manner. Additionally, BUB1i also reduced EGF mediated pEGFR (Y845) dimers (asymmetric dimers) without affecting total EGFR dimers (symmetric dimers) indicating that dimerization of inactive EGFR is not affected by BUB1. Furthermore, BUB1i blocked EGF mediated EGFR degradation (increase in EGFR half-life) without impacting half-lives of HER2 or c-MET. BUB1i also reduced co-localization of pEGFR with EEA1 positive endosomes suggesting that BUB1 might modulate EGFR endocytosis. Our data provide evidence that BUB1 protein and its kinase activity may regulate EGFR activation, endocytosis, degradation, and downstream signaling without affecting other members of the receptor tyrosine kinase family. Sign up for free Altmetric alerts about this article - https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.204820 Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts Keywords - aging, BUB1, EGFR, cancer, signaling, endocytosis About Aging-US Launched in 2009, Aging-US publishes papers of general interest and biological significance in all fields of aging research and age-related diseases, including cancer—and now, with a special focus on COVID-19 vulnerability as an age-dependent syndrome. Topics in Aging-US go beyond traditional gerontology, including, but not limited to, cellular and molecular biology, human age-related diseases, pathology in model organisms, signal transduction pathways (e.g., p53, sirtuins, and PI-3K/AKT/mTOR, among others), and approaches to modulating these signaling pathways. Please visit our website at https://www.Aging-US.com​​ and connect with us: SoundCloud - https://soundcloud.com/Aging-Us Facebook - https://www.facebook.com/AgingUS/ Twitter - https://twitter.com/AgingJrnl Instagram - https://www.instagram.com/agingjrnl/ YouTube - https://www.youtube.com/@AgingJournal LinkedIn - https://www.linkedin.com/company/aging/ Pinterest - https://www.pinterest.com/AgingUS/ Media Contact 18009220957 MEDIA@IMPACTJOURNALS.COM

    Cell ScienceMolecular Biology

    Keep up to date with all your favourite videos and channels.

    Get personalised notifications on new releases and channel content by subscribing to the LabTube eNewsletter.