Behind the Study: Lotus Germ Extract Rejuvenates Aging Fibroblasts

17 views

|

October 27, 2022

  • Share
  • Dr. Takushi Namba, Associate Professor at Kochi University in Japan, discusses a research paper he co-authored that was published by Aging (Aging-US) in Volume 14, Issue 19, entitled, “Lotus germ extract rejuvenates aging fibroblasts via restoration of disrupted proteostasis by the induction of autophagy.” DOI - https://doi.org/10.18632/aging.204303 Corresponding author - Takushi Namba - t-namba@kochi-u.ac.jp Video transcript - https://aging-us.net/2022/10/27/behind-the-study-lotus-germ-extract-rejuvenates-aging-fibroblasts/ Abstract Cell aging attenuates cellular functions, resulting in time-dependent disruption of cellular homeostasis, which maintains the functions of proteins and organelles. Mitochondria are important organelles responsible for cellular energy production and various metabolic processes, and their dysfunction is strongly related to the progression of cellular aging. Here we demonstrate that disruption of proteostasis attenuates mitochondrial function before the induction of DNA damage signaling by proliferative and replicative cellular aging. We found that lotus (Nelumbo nucifera Gaertn.) germ extract clears abnormal proteins and agglutinates via autophagy-mediated restoration of mitochondrial function and cellular aging phenotypes. Pharmacological analyses revealed that DAPK1 expression was suppressed in aging cells, and lotus germ extract upregulated DAPK1 expression by stimulating the acetylation of histones and then induced autophagy by activating the DAPK1-Beclin1 signaling pathway. Furthermore, treatment of aging fibroblasts with lotus germ extract stimulated collagen production and increased contractile ability in three-dimensional cell culture. Thus, time-dependent accumulation of abnormal proteins and agglutinates suppressed mitochondrial function in cells in the early stage of aging, and reactivation of mitochondrial function by restoring proteostasis rejuvenated aging cells. Lotus germ extract rejuvenates aging fibroblasts via the DAPK1-Beclin1 pathway-induced autophagy to clear abnormal proteins and agglutinates. Sign up for free Altmetric alerts about this article - https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.204303 Keywords - aging, mitochondria, autophagy, proteostasis About Aging-US Launched in 2009, Aging-US publishes papers of general interest and biological significance in all fields of aging research and age-related diseases, including cancer—and now, with a special focus on COVID-19 vulnerability as an age-dependent syndrome. Topics in Aging-US go beyond traditional gerontology, including, but not limited to, cellular and molecular biology, human age-related diseases, pathology in model organisms, signal transduction pathways (e.g., p53, sirtuins, and PI-3K/AKT/mTOR, among others), and approaches to modulating these signaling pathways. Please visit our website at https://www.Aging-US.com​​ and connect with us: SoundCloud - https://soundcloud.com/Aging-Us Facebook - https://www.facebook.com/AgingUS/ Twitter - https://twitter.com/AgingJrnl Instagram - https://www.instagram.com/agingjrnl/ YouTube - https://www.youtube.com/agingus​ LinkedIn - https://www.linkedin.com/company/aging/ Pinterest - https://www.pinterest.com/AgingUS/ Media Contact 18009220957 MEDIA@IMPACTJOURNALS.COM

    Analytical TechniquesCell CultureCell Science

    Keep up to date with all your favourite videos and channels.

    Get personalised notifications on new releases and channel content by subscribing to the LabTube eNewsletter.