12-Lipoxygenase Promotes Senescence-Associated Tumor Growth



February 17, 2022

Aging (Aging-US) published this priority research paper as the cover for Volume 14, Issue 3, entitled, "Senescence-associated tumor growth is promoted by 12-Lipoxygenase" by researchers from the Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD. DOI - https://doi.org/10.18632/aging.203890 Corresponding author - Deborah E. Citrin - citrind@mail.nih.gov Abstract Radiation therapy is a commonly used treatment modality for cancer. Although effective in providing local tumor control, radiation causes oxidative stress, inflammation, immunomodulatory and mitogenic cytokine production, extracellular matrix production, and premature senescence in lung parenchyma. The senescence associated secretory phenotype (SASP) can promote inflammation and stimulate alterations in the surrounding tissue. Therefore, we hypothesized that radiation-induced senescent parenchymal cells in irradiated lung would enhance tumor growth. Using a murine syngeneic tumor model of melanoma and non-small cell lung cancer lung metastasis, we demonstrate that radiation causes a significant increase in markers of premature senescence in lung parenchyma within 4 to 8 weeks. Further, injection of B16F0 (melanoma) or Lewis Lung carcinoma (epidermoid lung cancer) cells at these time points after radiation results in an increase in the number and size of pulmonary tumor nodules relative to unirradiated mice. Treatment of irradiated mice with a senolytic agent (ABT-737) or agents that prevent senescence (rapamycin, INK-128) was sufficient to reduce radiation-induced lung parenchymal senescence and to mitigate radiation-enhanced tumor growth. These agents abrogated radiation-induced expression of 12-Lipoxygenase (12-LOX), a molecule implicated in several deleterious effects of senescence. Deficiency of 12-LOX prevented radiation-enhanced tumor growth. Together, these data demonstrate the pro-tumorigenic role of radiation-induced senescence, introduces the dual TORC inhibitor INK-128 as an effective agent for prevention of radiation-induced normal tissue senescence, and identifies senescence-associated 12-LOX activity as an important component of the pro-tumorigenic irradiated tissue microenvironment. These studies suggest that combining senotherapeutic agents with radiotherapy may decrease post-therapy tumor growth. Sign up for free Altmetric alerts about this article - https://oncotarget.altmetric.com/details/email_updates?id=10.18632%2Foncotarget.203890 Keywords - aging, senescence, radiation, senolytic, metastasis, Alox12 About Aging-US Launched in 2009, Aging-US publishes papers of general interest and biological significance in all fields of aging research and age-related diseases, including cancer—and now, with a special focus on COVID-19 vulnerability as an age-dependent syndrome. Topics in Aging-US go beyond traditional gerontology, including, but not limited to, cellular and molecular biology, human age-related diseases, pathology in model organisms, signal transduction pathways (e.g., p53, sirtuins, and PI-3K/AKT/mTOR, among others), and approaches to modulating these signaling pathways. Please visit our website at http://www.Aging-US.com​​ or connect with us: SoundCloud - https://soundcloud.com/Aging-Us Facebook - https://www.facebook.com/AgingUS/ Twitter - https://twitter.com/AgingJrnl Instagram - https://www.instagram.com/agingjrnl/ YouTube - https://www.youtube.com/agingus​ LinkedIn - https://www.linkedin.com/company/aging/ Pinterest - https://www.pinterest.com/AgingUS/ Aging-US is published by Impact Journals, LLC: http://www.ImpactJournals.com​​ Media Contact 18009220957 MEDIA@IMPACTJOURNALS.COM

Cancer ResearchCell ScienceDrug DiscoveryImmunology

Keep up to date with all your favourite videos and channels.

Get personalised notifications on new releases and channel content by subscribing to the LabTube eNewsletter.