Author Insight: Age-related Changes in Eye Lens Biomechanics



November 22, 2021

  • Share
  • Aging-US published a Special Collection on Eye Disease which included "Age-related changes in eye lens biomechanics, morphology, refractive index and transparency" which reported that life-long eye lens function requires an appropriate gradient refractive index, biomechanical integrity and transparency. The authors conducted an extensive study of wild-type mouse lenses 1-30 months of age to define common age-related changes. Biomechanical testing and morphometrics revealed an increase in lens volume and stiffness with age. Their results suggest similarities between murine and primate lenses and provide a baseline for future lens aging studies. Dr. Velia M. Fowler and Dr. Catherine Cheng said, "The eye lens is required for fine focusing of light onto the retina to form a clear image, and the function of the lens is intimately tied to its shape, biomechanical properties, transparency and refractive index." The eye lens is required for fine focusing of light onto the retina to form a clear image. It has long been known that age-related changes in these lens properties lead to two major lens pathologies, cataracts and presbyopia. Presbyopia is caused by a reduction in the lens' ability to change shape during focusing (accommodation), and, by extension, the need for reading glasses. Mice offer an opportunity to investigate changes in lens morphometrics, stiffness, transparency and refractive properties with age in a relatively shortened period of time. Little is known about the morphological, mechanical, refractive and cellular changes that occur with advanced age in the lens. The authors demonstrate that age-related changes in mouse lenses mimic some aspects of aging in human lenses. The Fowler/Cheng Research Team concluded in their Aging-US Research Output, "the increases in lens size and nucleus size are correlated with increase stiffness with age. The addition of new fiber cells at the lens periphery becomes disordered with age, but this does not appear to impact lens biomechanical properties. Cataracts in aged lenses can be due to cell structural abnormalities, including incomplete suture closure, collapse of the lens epithelial cell layer into the suture gap and loss of epithelial-fiber cell attachments and compaction of the cortical lens fiber cells forming a circumferential light scattering ring. GRIN is present in the lens from 2 weeks of age and continues to increase until about 6 months of age, after which the maximum refractive index remains stable. The increase in the area of highest refractive index at the center of the lens is directly correlated with the increase in lens nucleus size, suggesting nuclear compaction drives the maximum GRIN. Whether there is a common molecular mechanism that drives changes in all the measured parameters remains unknown, but further biochemical and cell morphology studies will be needed to determine how subcellular aging affects the whole tissue. Thus, our study provides a baseline for future studies of lens aging by providing quantitative measurements of key parameters and identifying common age-related changes in the overall tissue and in individual cells" Full Text - Correspondence to: Velia M. Fowler email: and Catherine Cheng email: Keywords: fiber cell, strain, epithelial cell, cataract, stiffness About Aging-US Launched in 2009, Aging-US publishes papers of general interest and biological significance in all fields of aging research and age-related diseases, including cancer—and now, with a special focus on COVID-19 vulnerability as an age-dependent syndrome. Topics in Aging-US go beyond traditional gerontology, including, but not limited to, cellular and molecular biology, human age-related diseases, pathology in model organisms, signal transduction pathways (e.g., p53, sirtuins, and PI-3K/AKT/mTOR, among others), and approaches to modulating these signaling pathways. Please visit our website at​​ or connect with us on: SoundCloud - Facebook - Twitter - Instagram - YouTube -​ LinkedIn - Pinterest - Aging-US is published by Impact Journals, LLC please visit​​ or connect with @ImpactJrnls Media Contact 18009220957 MEDIA@IMPACTJOURNALS.COM

    Imaging/MicroscopyMolecular BiologyNeuroscienceSpectroscopy

    Keep up to date with all your favourite videos and channels.

    Get personalised notifications on new releases and channel content by subscribing to the LabTube eNewsletter.